ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ТРУД (ТЕХНОЛОГИЯ) 2024—2025 уч. г. ШКОЛЬНЫЙ ЭТАП. 7—8 КЛАССЫ

Профиль «Культура дома, дизайн и технология» Профиль «Техника, технология и техническое творчество» Практический тур 3D-моделирование

Максимальная оценка за работу – 35 баллов.

Задание: по предложенному образцу разработайте технический рисунок изделия, создайте 3D-модель изделия в системе автоматизированного проектирования (САПР), подготовьте проект для печати прототипа на 3D-принтере. Процесс 3D-печати не требуется и не оценивается.

Изделие: модель колпачка для фломастера.

Рис. 1. Образец колпачка для фломастера

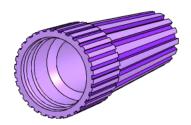


Рис. 2. Пример 3Dмодели изделия

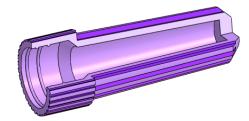


Рис. 3. Пример внутреннего строения колпачка

Габаритные размеры: не более $60 \times 20 \times 20$ мм, не менее $30 \times 10 \times 10$ мм.

Прочие размеры и требования:

- ✓ изделие представляет собой модель колпачка для фломастера (см. Рис. 1), сам фломастер моделировать не требуется; размеры данной модели колпачка могут быть крупнее обычных колпачков, но в указанных пределах;
- ✓ форма колпачка ступенчатая, количество ступеней не менее 2; на конце имеется фаска или скругление;
- ✓ внутри форма колпачка повторяет ступени наружной поверхности (см. Рис. 3), минимальный диаметр внутренней полости не менее ∅5 мм;
- ✓ длинная часть колпачка имеет коническую форму, плавно уменьшается к концу; на поверхности выполняются продольные канавки (или рёбра) для удобства удержания в руке; глубина рельефа здесь не менее 1 мм, количество не менее 8;
- ✓ сторона колпачка с отверстием может иметь цилиндрическую форму; снаружи также покрыта насечкой (рёбрами или канавками) с более мелким рельефом, но не менее 0,5 мм; характер насечки на усмотрение участника;

- ✓ с внутренней стороны у края отверстия выполняется хотя бы одно кольцевое ребро малой высоты, чтобы колпачок не слетал с фломастера (в примере изображены два таких ребра, см. Рис. 2 и 3);
- ✓ на чертеже надо указать не менее 7 размеров;
- ✓ результаты своей работы следует сверить с критериями оценивания в проверочной таблице для экспертов (в конце задания).

Дизайн:

- ✓ используйте для модели произвольные цвета, отличные от базового серого;
- ✓ неуказанные размеры и элементы дизайна выполняйте по собственному усмотрению;
- ✓ поощряется творческий подход к конструкции и украшению изделия, не ведущий к существенному упрощению задания; свои модификации опишите явно на рисунке или чертеже изделия.

Рекомендации:

- > при разработке модели не следует делать элементы слишком мелкими;
- продумайте способ размещения модели в программе-слайсере и эффективность поддержек и слоёв прилипания;
- не спешите, помните, что верный расчёт времени поощряется.

Порядок выполнения работы:

- 1) на листе чертёжной или писчей бумаги разработайте технический рисунок изделия для последующего моделирования с указанием габаритных и иных важных размеров, подпишите лист своим персональным номером участника;
- 2) создайте личную папку в указанном организаторами месте (на рабочем столе компьютера или сетевом диске) с названием по шаблону:

Zadanie_номер участника_rosolimp	Zadanie v12.345.678 rosolimp
Шаблон ¹	Пример

- 3) выполните электронную 3D-модель изделия в программе САПР;
- 4) сохраните в личную папку файл проекта в формате **среды разработки** (например, в Компас 3D это формат **m3d**) и в формате **STEP** с названием по тому же шаблону:

Шаблон	Пример	
detalN_rosolimp.тип	detal1_rosolimp.m3d detal1_rosolimp.step	

¹ Вместо слова **zadanie** допустимо использовать название изделия.

- 5) экспортируйте 3D-модели изделия в формат .**STL** в личную папку, следуя тому же шаблону имени (пример: **zadanie_rosolimp.stl**);
- 6) подготовьте модель к печати на 3D-принтере в программе-слайсере (CURA, Polygon или иной), выставив необходимые настройки в соответствии с параметрами печати по умолчанию² или особо указанными организаторами; необходимость поддержек и контуров прилипания определите самостоятельно;
- 7) выполните скриншот проекта в слайсере, демонстрирующий выбранные настройки печати, сохраните его в личную папку (пример: **neчaть_rosolimp.jpg**);
- 8) сохраните файл проекта для печати (G-код) в формате программы-слайсера, по тому же шаблону имени (пример: zadanie_rosolimp.gcode);
- 9) в программе САПР **или** вручную на листе чертёжной или писчей бумаги оформите чертёж изделия, соблюдая требования ГОСТ ЕСКД, в необходимом количестве взаимосвязанных проекций, с проставлением размеров, выявлением внутреннего строения изделия, оформлением рамки и основной надписи и т.д. (если выполняете чертёж на компьютере, сохраните его в личную папку в формате программы и в формате **PDF**);
- 10) продемонстрируйте и сдайте организаторам все созданные материалы:
 - ✓ технический рисунок изделия (выполненный от руки на бумаге);
 - ✓ личную папку с файлами 3D-модели в форматах **step**, **stl**, модель **в формате среды разработки**, проект изделия **в формате слайсера**, скриншоты настроек печати;
 - ✓ итоговые чертежи изделия (распечатку электронных чертежей из формата PDF осуществляют организаторы).

На школьном этапе олимпиады процесс 3D-печати не требуется и не оценивается.

По окончании выполнения заданий не забудьте навести порядок на рабочем месте. Успешной работы!

² Параметры печати по умолчанию обычно выставлены в программе-слайсере: модель 3D-принтера, диаметр сопла, температура печати, толщина слоя печати, заполнение и т.д., – но рекомендуется уточнить у организаторов.

Критерии оценивания практической работы по 3D-моделированию

(таблица заполняется экспертами)

	Уружарну анамирания	Макс.	Итог
	Критерии оценивания Оценка складывается по наличию элементов, в пределах максимума	балл	11101
	3D-моделирование в САПР		
1.	Технические особенности созданной 3D-модели	14	
	✓ габаритные размеры выдержаны (+1 балл)		
	✓ требование к ступенчатой форме изделия учтено (+1 балл)		
	✓ внутренняя форма повторяет наружную (+1 балл)		
	✓ требование к минимальному диаметру учтено (+1 балл)		
	✓ форма длинной части колпачка коническая (+1 балл)		
	✓ требования к рельефу длинной части учтены (+1 балл)		
	✓ требование к насечке снаружи со стороны отверстия учтено		
	(+1 балл)		
	 ✓ имеется хотя бы одно кольцевое ребро внутри (+1 балл) 		
	 ✓ изделие выглядит эстетично, не искажённо (+1 балл) 		
	✓ модель цельная, нет «оторванных» элементов (+1 балл)		
	✓ цвет модели отличается от стандартного в САПР (+1 балл)		
	✓ модель сохранена в STEP-формат (+1 балл)		
	 ✓ файлы в папке именованы верно, по заданию (+2 балла) 		
2.	Сложность разработанной конструкции 3D-модели,	3	
	модификация (форма, технические решения,		
	трудоёмкость)		
	 ✓ имеется дополнительная конструктивная модификация 		
	относительно образца в задании, усложнение формы		
	(+1 балл)		
	 ✓ имеется дополнительное украшение изделия (+1 балл) 		
	 ✓ сделано текстовое описание модификации (+1 балл) 		
	Подготовка проекта к 3D-печати		
3.	Файл командного кода для 3D-печати модели в	4	
	программе-слайсере (например, Cura, Polygon или иной)		
	✓ G-код модели получен (+1 балл)		
	✓ сделан скриншот с настройками 3D-печати (+1 балл)		
	✓ видимые на скриншоте настройки печати соответствуют		
	рекомендациям (+1 балл)		
	 ✓ созданные файлы именованы верно (+1 балл) 		
4.	Эффективность размещения изделия	2	
	✓ изделие оптимально ориентировано с точки зрения		
	процесса печати и прочности конструкции (+1 балл)		
	 ✓ проект печати имеет масштаб 100% (+1 балл) 		

	Критерии оценивания	Макс.	Итог		
	Оценка складывается по наличию элементов, в пределах максимума	балл			
5.	Эффективность применения при 3D-печати контуров	2			
	прилипания и поддержек				
	 ✓ выбор участником наличия или отсутствия поддержек 				
	в проекте печати осуществлён грамотно (+1 балл)				
	 ✓ выбор участником наличия или отсутствия слоя 				
	прилипания («юбки») в проекте печати осуществлён				
	грамотно (+1 балл)				
	Графическое оформление задания				
6.	Предварительный технический рисунок на бумаге	3			
	 ✓ на рисунке изображены все конструктивные элементы 				
	(+1 балл)				
	 ✓ выдержаны пропорции между деталями (+1 балл) 				
	 ✓ проставлены габаритные и прочие важные размеры 				
	(+1 балл)				
7.	Итоговый чертёж (на бумаге или в электронном виде)	7			
	✓ рамка чертежа выполнена по шаблону ГОСТ или				
	«Школьный» (+1 балл)				
	 ✓ имеется необходимое количество видов (+1 балл) 				
	 ✓ имеется аксонометрический вид (+1 балл) 				
	 ✓ имеется разрез, выявляющий внутреннее строение 				
	или наглядные линии внутреннего контура (+1 балл)				
	✓ осевые линии нанесены верно (+1 балл),				
	✓ все необходимые размеры проставлены верно, всего				
	не менее 7 размеров (+1 балл)				
	 ✓ основная надпись чертежа заполнена верно (+1 балл) 				
	Итого:	35			