ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ТЕХНОЛОГИИ РЕГИОНАЛЬНЫЙ ЭТАП ТЕОРЕТИЧЕСКИЙ ТУР

9 класс

Профиль «Робототехника»

Уважаемый участник олимпиады!

Вам предстоит выполнить теоретические и тестовые задания.

Время выполнения заданий теоретического тура 2 академических часа (120 минут). Выполнение тестовых заданий целесообразно организовать следующим образом:

- не спеша, внимательно прочитайте тестовое задание;
- определите, какой из предложенных вариантов ответа наиболее верный и полный;
- напишите букву, соответствующую выбранному Вами ответу;
- в бланках ответов запишите решение задач в явном виде;
- продолжайте, таким образом, работу до завершения выполнения тестовых заданий;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности ваших ответов;
- если потребуется корректировка выбранного Вами варианта ответа, то неправильный вариант ответа зачеркните крестиком, и рядом напишите новый.

Выполнение теоретических (письменных, творческих) заданий целесообразно организовать следующим образом:

- не спеша, внимательно прочитайте задание и определите, наиболее верный и полный ответ;
- отвечая на теоретический вопрос, обдумайте и сформулируйте конкретный ответ только на поставленный вопрос;
- если Вы выполняете задание, связанное с заполнением таблицы или схемы, не старайтесь детализировать информацию, вписывайте только те сведения или данные, которые указаны в вопросе;
- особое внимание обратите на задания, в выполнении которых требуется выразить Ваше мнение с учетом анализа ситуации или поставленной проблемы. Внимательно и вдумчиво определите смысл вопроса и логику ответа (последовательность и точность изложения). Отвечая на вопрос, предлагайте свой вариант решения проблемы, при этом ответ должен быть кратким, но содержать необходимую информацию;
- после выполнения всех предложенных заданий еще раз удостоверьтесь в правильности выбранных Вами ответов и решений.

Предупреждаем Вас, что:

- при оценке тестовых заданий, где необходимо определить один правильный ответ, 0 баллов выставляется за неверный ответ и в случае, если участником отмечены несколько ответов (в том числе правильный), или все ответы;
- при оценке тестовых заданий, где необходимо определить все правильные ответы, 0 баллов выставляется, если участником отмечены неверные ответы, большее количество ответов, чем предусмотрено в задании (в том числе правильные ответы) или все ответы.

Задание теоретического тура считается выполненным, если Вы вовремя сдаете его членам жюри.

Максимальная оценка – 25 баллов.

Общая часть

1. Вставьте пропущенные слова.

Опасн	юсть попадан	ия нефти в во	оду заключ	чается в ух	кудшении	ее качес	гва,
а также в	создании на	поверхности	воды пло	тной плен	ки, через	которую	не
проникают	r1	И	2	, необ	бходимые	подводн	ым
жителям.							

2. Ответьте на вопрос «верно» или «неверно».

Кирпичи из грибов станут одним из самых перспективных экологически чистых строительных материалов, потому что он относительно дешев и прост в изготовлении, подойдет для всех видов строительных проектов и гораздо экологичнее традиционных строительных материалов.

3. Верны ли следующие утверждения?

	Утверждение
1	Домашнее хозяйство представляет собой группу людей, объединенных
	общими задачами, местом проживания, бюджетом и обычно семейными
	связями.
2	Финансовое предпринимательство является базовым для всех других его
	видов (производственного, коммерческого, инновационного и др.)

- 4. Выберите из предложенных вариантов назначения линий на чертеже деталей из металла только те варианты, которые относятся к сплошной тонкой линии:
 - а. выносные линии;
 - б. линии-выноски;
 - в. размерные линии;
 - г. контур наложенного сечения;
 - д. невидимый контур предмета;
 - е. видимый контур предмета;
 - ж. штриховки сечений;
 - з. все перечисленные варианты.

5. Соотнесите названия технологий с их определением.

	Название		Определение		
1	Биотехнологии	a	совокупность приёмов, методов и воздействий, позволяющих добиваться поставленных целей в решении задач взаимодействия между людьми		
2	Нанотехнологии	б	совокупность технологий влияния на группу людей или отдельного человека		

	Название
3	Лазерные
	технологии
4	Информационные
	технологии
5	Когнитивные
	технологии
6	Commonway
О	Социальные
	технологии
7	Гуманитарные
	технологии

	Определение
В	технологии использования живых организмов, их систем (ДНК, клеток и т.п.) и продуктов их жизнедеятельности для создания новых продуктов с заданными свойствами и решения технических задач
Γ	совокупность процессов, методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами
Д	технологии, направленные на оптимизацию процессов познания человеком себя и окружающего мира
e	технологии получения, передачи, хранения и использования информации
Ж	процессы обработки, изготовления, изменения состояния свойств и формы материалов, осуществляемые посредством вынужденного испускания атомами вещества квантов электромагнитного излучения

Специальная часть

6. Повторитель на микросхеме, выполненной по технологии КМОП (рис. 1), переключается из 0 в 1 и обратно при напряжении на входе равном половине напряжения питания. Выходное напряжение логического нуля 0 вольт. Выходное напряжение логической единицы равно напряжению питания.

Рис. 1. Повторитель.

Рис. 2. Триггер Шмитта.

6.1.(2 балла) Какие будут напряжение включения ($U_{вкл}$) и напряжение выключения ($U_{выкл}$) элемента, если повторитель включить по схеме триггера Шмитта (рис. 2)? Входное сопротивление повторителя считать равным бесконечности, а выходное равным нулю. Ответ дать в формате 1А2Б, где 1 - это $U_{вкл}$, 2 - это $U_{выкл}$, на основе вариантов из Таблицы 1.

Таблица 1. Варианты формул для расчета напряжения включения и выключения

A	$\frac{U_{\text{пит}}}{2} \cdot \left(1 + \frac{R_2}{R_1}\right)$
Б	$\frac{U_{\text{пит}}}{2} \cdot \left(1 - \frac{R_1}{R_2}\right)$
В	$U_{\text{пит}} \cdot \frac{R_2 - R_1}{2R_1}$
Γ	$U_{\text{пит}} \cdot \frac{1 - R_1 \cdot R_2}{2}$
Д	$\frac{U_{\text{пит}}}{2} \cdot \left(1 + \frac{R_1}{R_2}\right)$

6.2.(1 балл) Фотодатчик линии вырабатывает напряжение 1 вольт, если находится на чёрном участке, и 7,5 вольт, если на белом. Напряжение питания триггера Шмитта 9 вольт, R1 = 510 кОм, R2 = 1 Мом (рис. 3). Каким будет напряжение включения и напряжение выключения? Ответы округлите до десятых.

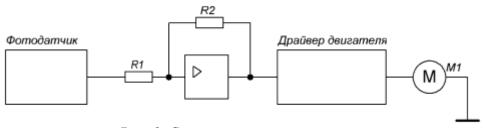


Рис. 3. Схема включения двигателя

- 6.3.(1 балл) Будет ли триггер Шмитта стабильно включать и выключать двигатель? Ответ обоснуйте, считая стабильной ситуацию при разности соответствующих напряжений строго больше 0,1В.
- 6.4.(1 балл) Какие должны быть максимальное напряжение логического нуля и минимальное напряжение логической единицы фотодатчика (рис. 3), если напряжение питания триггера Шмитта 9 вольт, R1 = 100 кОм, R2 = 300 кОм?
- 7. Робот оснащён двумя отдельно управляемыми колёсами, диаметр каждого из колёс робота равен 8 см. Левым колесом управляет мотор А, правым колесом управляет мотор В. Колёса напрямую подсоединены к моторам. Маркер закреплён посередине между колёс. Ширина колеи робота равна 24

см. Моторы на роботе установлены так, что если обе оси повернутся на 10° , то робот проедет прямо вперёд. При расчётах примите $\pi \approx 3,14$.

В начале работы программы энкодеры моторов были обнулены. Дальнейшее изменение показаний энкодеров показано на графиках:

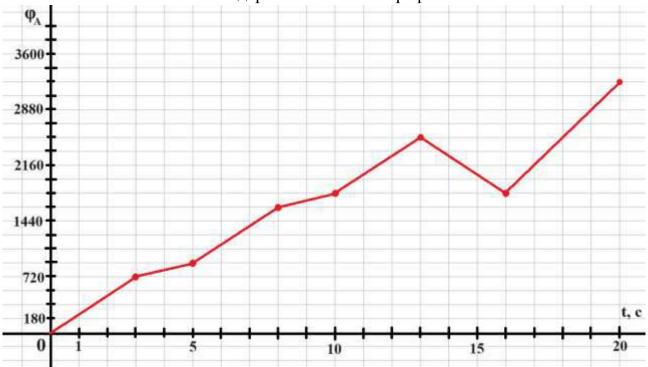


Рис. 4. График изменения показаний энкодера мотора А.

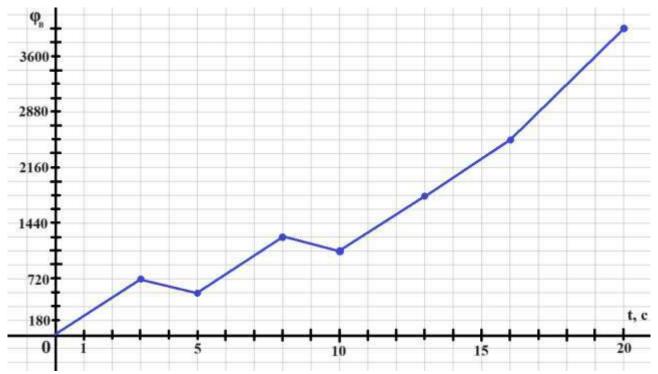


Рис. 4. График изменения показаний энкодера мотора В.

Определите:

7.1. (1 балл) Отрезок времени, когда робот совершал первый танковый разворот. Ответ дайте в формате «A,B» без кавычек, где A – время

- начала, а В время конца, например, с 1 по 2 секунду можно записать как 1,2:
- 7.2. (1 балл) Отрезок времени, когда робот совершал третий проезд прямо. Ответ дайте в формате «A,B» без кавычек, где A время начала, а B время конца, например, с 1 по 2 секунду можно записать как 1,2;
- 7.3. (1 балл) Отрезок времени, когда робот совершал танковый разворот против хода часовой стрелки. Ответ дайте в формате «A,B» без кавычек, где A время начала, а B время конца, например, с 1 по 2 секунду можно записать как 1,2;
- 7.4. (1 балл) Градусную меру угла, на которую повернулся робот при первом танковом развороте. Ответ дайте в градусах, приведя результат с точностью до целых;
- 7.5. (1 балл) Длину отрезка, который робот начертил при последнем проезде прямо. Ответ дайте в дециметрах с точностью до целых;
- 7.6. (1 балл) Площадь геометрической фигуры, которую начертил робот с помощью маркера. Ответ дайте в квадратных дециметрах, приведя результат с точностью до целых.
- 8. Рома собирает спутник из старых деталей. Как известно, в космическом пространстве ориентация спутников по разным осям происходит с помощью маховиков. В качестве маховиков Рома взял соответствующий узел из образовательного конструктора спутников, но у него не сохранились полные описания технических параметров маховика из конструктора. Мальчик нашел лишь обрывок документа, на котором различил следующие характеристики:

Конструктивный коэффициент двигателя маховика $km = 0.002 \, \, \text{H} \cdot \text{м/A}$

8.1.(2 балла) Роме нужно узнать момент инерции маховика. Покопавшись в интернете, он нашел, что момент двигателя постоянного тока прямо пропорционален току: М = I·km, где М — момент двигателя [H·м], I — ток двигателя [A], km — конструктивный коэффициент [H·м/A]. Опираясь на графики, которые Рома снял на двигателе маховика, помогите ему посчитать момент инерции маховика, если момент инерции связан с моментом на валу следующим соотношением (2 закон Ньютона для вращательного движения):М=Јɛ, где М — момент на валу, Н·м; Ј — момент инерции, кг*м²; ɛ- угловое ускорение, рад/с².

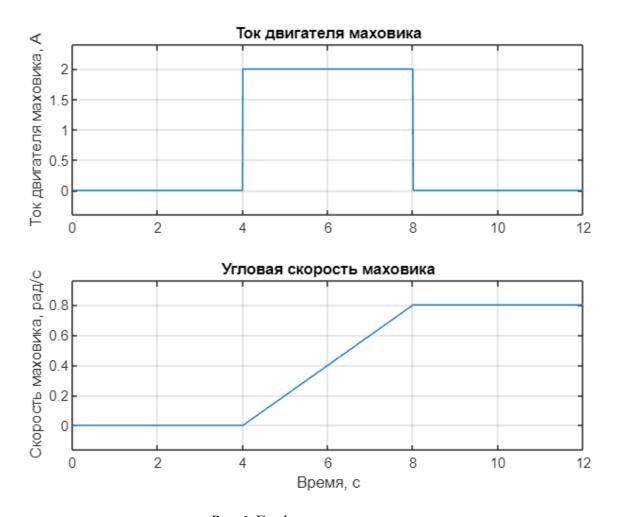


Рис.6. Графики характеристик маховика.

Считать, что спутник неподвижен, угловая скорость маховика измеряется относительно корпуса спутника.

Ответ дайте в $[\kappa \Gamma^* M^2]$

9. Универсальность манипулятора оценивается числом степеней подвижности, определяющий его двигательные возможности, то есть способностью манипулятора перемещаться в пространстве. С помощью кинематических схем показывают, как происходит передача движения в различных степенях подвижности.

Звенья и кинематические пары показывают на кинематических схемах с помощью условных обозначений (см. таблицу 2).

Таблица 2. Условные обозначения в кинематических схемах

Элемент	Эскиз	Характеристика
Звено (стержень)	—	

Элемент	Эскиз	Характеристика
Неподвижное закрепление звена (стойка)		Движение отсутствует
Жёсткое закрепление звеньев		Движение отсутствует
Подвижное соединение с перемещением вдоль прямолинейных направляющих		Возвратно- поступательное движение
Плоское шарнирное соединение звеньев		Вращение вокруг поперечной оси
Поступательная кинематическая пара		
Вращательная кинематическая пара	— 	
Возможное место разделения манипулятора на модули		
Рабочий орган манипулятора		

В наборе есть три поступательных кинематических пары и три вращательные кинематические пары. Известно, что одна поступательная кинематическая пара может перемещаться от -12 до 12 см, вторая — от 0 до 30 см, третья — от 20 до 40 см. Первая вращательная кинематическая пара может поворачиваться от -30° до 30°, вторая кинематическая пара может поворачиваться от 0 до 90°, третья кинематическая пара может поворачиваться от -60° до 60°.

Пользуясь кинематическими парами из набора по следующей кинематической схеме собрали манипулятор, соединив кинематические пары под прямым углом (рис. 7).

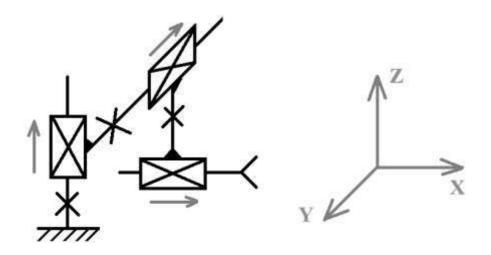
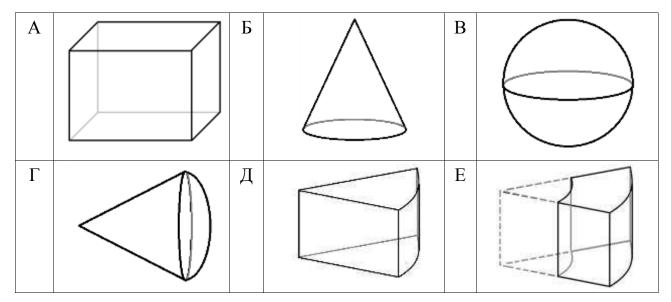



Рис. 7. Кинематическая схема.

Определите:

- 9.1.(1 балл) Сколько поступательных степеней подвижности у манипулятора, собранного по данной кинематической схеме;
- 9.2.(1 балл) Сколько вращательных степеней подвижности есть у манипулятора, собранного по данной кинематической схеме;
- 9.3. (1 балл) Какую форму будет иметь рабочая область манипулятора. Среди предложенных вариантов укажите один верный;

Таблица 3. Варианты рабочей области манипулятора

9.4.(1 балл) Определите объем рабочей зоны манипулятора. Ответ дайте в кубических дециметрах с точностью до целых. При расчетах примите $\pi \approx 3,14$. Округление стоит производить только при получении финального ответа.

10.Ученик девятого класса на уроке собрал устройство по следующей принципиальной схеме:

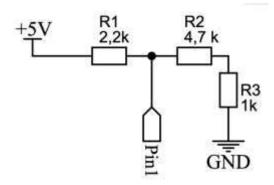


Рис. 8. Принципиальная схема устройства.

Разъем ріп 1 подключен к входу контроллера с АЦП.

- 10.1. (2 балла) Какое напряжение будет приходить на разъем ріп 1? Ответ округлите до десятых.
- 10.2. (1 балл) Какое значение вернет программа при опросе данного порта, если известно, что контроллер оснащен АЦП с разрядностью 11 бит и опорным напряжением 5В.