Муниципальный этап Всероссийской олимпиады по математике

Решения задач

Москва, декабрь 2021

В 7 и 8 классах участникам отводилось 90 минут на решение олимпиады, а в 9, 10 и 11 классах — 120 минут.

Для каждого номера задания составители подготовили несколько версий задач. Под каждым номером участнику случайным образом выдавалась одна из версий. Таким образом, у каждого школьника был свой вариант олимпиады. Далее для каждого номера приведена только одна версия задачи с решением.

Содержание

7 класс	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	2
8 класс	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	8
9 класс	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	17
10 класс	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	25
11 класс	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	32

7 класс

Задача 7.1. В 7 «Б» классе учится больше 3, но меньше 15 детей. На Новый год к ним пришёл Дед Мороз с мешком, в котором было 195 конфет. Раздав всем ребятам в классе поровну конфет, Дед Мороз обнаружил, что в мешке осталось 8 конфет. Сколько конфет получил каждый из ребят?

Ответ: 17.

Решение. Детям досталось $195-8=187=11\cdot 17$ конфет. Это число должно делиться на количество детей в классе, которое больше 3 и меньше 15. Значит, детей в классе 11, и каждому из них досталось 187:11=17 конфет. □

Задача 7.2. В белом клетчатом квадрате 5×5 Петя закрасил несколько клеток в чёрный цвет так, что в каждом клетчатом квадрате 2×2 оказалось не более двух чёрных клеток. Его друг Вася, посмотрев на рисунок, решил перекрасить в белый цвет некоторые 5 клеток, любые две из которых находятся в разных строках и в разных столбцах. После этого получился рисунок, изображённый ниже.

	1	2	3	4	5
\boldsymbol{A}					
B					
C					
D					
E					

Какие пять клеток перекрасил Вася?

Постройте соответствие.

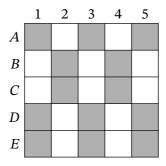
- В строке А перекрашенная клетка стоит
- В строке В перекрашенная клетка стоит
- В строке С перекрашенная клетка стоит
- В строке *D* перекрашенная клетка стоит
- В строке Е перекрашенная клетка стоит

- в столбце с номером 1.
- в столбце с номером 2.
- в столбце с номером 3.
- в столбце с номером 4.
- в столбце с номером 5.

Omeem: A - 1, B - 4, C - 2, D - 3, E - 6.

Решение. Из условия следует, что клетки D2, E2, A2, B3, D4, C5 не были чёрными. В столбце 2 и в строке D перекрашенные чёрные клетки восстанавливаются однозначно: это C2

и D3. Тогда клетки C1, C3, B1, E4 не были чёрными. Тогда в столбце 1 и в строке E перекрашенные клетки восстанавливается однозначно: это A1 и E5. Тогда оставшаяся чёрная клетка — это B4.



Задача 7.3. В примере с дробями некоторые *двузначные* натуральные числа заменили буквами A и B.

П

$$\frac{A-5}{A} + \frac{4}{B} = 1.$$

- (а) (2 балла) Какое наименьшее значение может принимать А?
- (б) (2 балла) Какое наибольшее значение может принимать В?

Ответ:

- (а) (2 балла) 15.
- (б) (2 балла) 76.

Решение. По условию

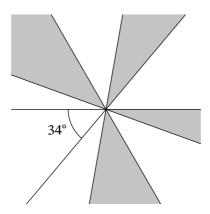
$$1 = \frac{A-5}{A} + \frac{4}{B} = 1 - \frac{5}{A} + \frac{4}{B},$$

откуда получаем $\frac{A}{5}=\frac{B}{4}$ и 4A=5B. Отсюда следует, что для некоторого целого k имеют место равенства A=5k и B=4k.

Поскольку $B=4k\geqslant 10$, получаем $k\geqslant 3$ и $A=5k\geqslant 5\cdot 3=15$. Значение A=15 возможно, если B=12.

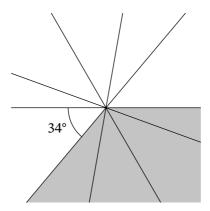
Поскольку $A=5k\leqslant 99$, получаем $k\leqslant 19$ и $B=4k\leqslant 4\cdot 19=76$. Значение B=76 возможно, если A=95.

Задача 7.4. На рисунке изображены 5 прямых, пересекающиеся в одной точке. Один из получившихся углов равен 34°. Сколько градусов составляет сумма четырёх углов, закрашенных серым цветом?



Ответ: 146°.

Решение. Заменим два «верхних» серых угла на равные им вертикальные, как на картинке:



Теперь ясно, что серые углы в сумме с углом 34° составляют 180°. Значит, сумма серых углов равна 146°. \Box

Задача 7.5. На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Однажды 35 жителей острова расселись за 7 столов, по 5 человек за каждым. Каждого из этих 35 жителей спросили: «Столов, за которыми сидят хотя бы 3 рыцаря, больше трёх?»

- (a) (1 балл) Какое наибольшее число жителей могли ответить «Да»?
- (б) (3 балла) Какое наибольшее число жителей могли ответить «Нет»?

Ответ:

(а) (1 балл) 35.

(б) (3 балла) 23.

Решение. (a) Ясно, что «Да» могли ответить все 35 человек, если бы они были рыцарями. Больше 35, очевидно, быть не могло.

(б) Рассмотрим два случая.

Первый случай. Утверждение «Столов, за которыми сидят хотя бы 3 рыцаря, больше трёх» — правда.

Тогда столов, за которыми хотя бы 3 рыцаря, хотя бы 4, то есть всего рыцарей хотя бы 12. Следовательно, лжецов не более 35 - 12 = 23, то есть ответов «нет» было не более 23.

Пример в этом случае построить нетрудно:

- за первыми четырьмя столами сидят по 3 рыцаря и 2 лжеца;
- за остальными тремя столами сидят по 5 лжецов.

Второй случай. Утверждение «Столов, за которыми сидят хотя бы 3 рыцаря, больше трёх» — ложь.

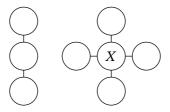
Тогда столов, за которыми сидят хотя бы 3 рыцаря, не более 3. Таким образом, есть хотя бы 4 стола, за каждым из которых сидят не более 2 рыцарей. Поэтому есть хотя бы 4 стола, за каждым из которых сидят хотя 3 лжеца, то есть лжецов хотя бы 12.

Поэтому рыцарей было не более 35 - 12 = 23, то есть ответов «нет» было не более 23.

Пример в этом случае построить нетрудно:

- за первыми тремя столами сидят по 5 рыцарей;
- за остальными четырьмя столами сидят по 2 рыцаря и 3 лжеца.

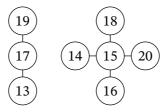
Задача 7.6. В кружочки на рисунке расставлены натуральные числа 13, 14, 15, 16, 17, 18, 19, 20 (каждое число — в одном кружочке) так, что все три суммы трёх чисел вдоль каждой линии равны. Какое число может оказаться в кружочке X? Укажите все возможные варианты.



Ответ: 15, 18.

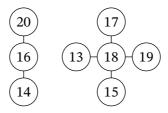
Решение. Пусть a — число в кружочке X. Сложив все три одинаковые суммы вдоль линий, мы получим сумму всех девяти чисел по разу, к которой ещё добавлено a. Следовательно, (13+14+...+20)+a=132+a делится на a. Тогда a делится на a, поэтому a=15 или a=18.

Значение a = 15 возможно, например, так:



В каждой линии сумма равна 49.

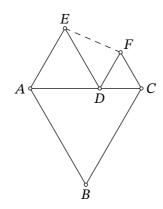
Значение a = 18 возможно, например, так:



В каждой линии сумма равна 50.

Задача 7.7. На стороне AC равностороннего треугольника ABC отмечена точка D. На отрезках AD и DC во внешнюю сторону от исходного треугольника построены равносторонние треугольники ADE и DCF. Известно, что периметр треугольника DEF равен 19, а периметр пятиугольника ABCFE равен 43.

П



- (а) (2 балла) Найдите длину отрезка АВ.
- **(б)** (2 балла) Найдите длину отрезка *EF*.

Ответ:

- (a) $(2 \, \text{балла}) \, AB = 12.$
- **(б)** $(2 \, \text{балла}) \, EF = 7.$

Решение. Пусть AE = ED = DA = a, DF = FC = CA = b, тогда AB = BC = CA = a + b. По условию 19 = a + b + EF и 43 = (a + b) + (a + b) + b + EF + a. Вычтем из второго равенства первое и поделим пополам, получим $12 = \frac{43-19}{2} = a + b = AB$. Тогда из первого равенства находим EF = 19 - (a + b) = 19 - 12 = 7.

Задача 7.8. В шахматном турнире участвовали 30 шахматистов, каждый сыграл с каждым ровно один раз. За победу давалось 1 очко, за ничью — 1/2, а за поражение — 0. У какого наибольшего числа шахматистов по окончании турнира могло оказаться ровно 5 очков?

Ответ: 11.

Решение. Пусть N — количество шахматистов с 5 очками.

Предположим, $N\geqslant 12$. В каждой игре между двумя играющими шахматистами разыгрывается 1 очко, поэтому сумма очков всех шахматистов, набравших 5 очков, по окончании турнира не меньше $\frac{N\cdot (N-1)}{2}$. Тогда по принципу Дирихле среди них найдётся тот, у которого очков не меньше $\frac{N-1}{2}\geqslant 5$, 5, противоречие. Значит, $N\leqslant 11$.

Покажем, что значение N=11 возможно. Разделим 30 шахматистов на две группы: в первой 11 человек, а во второй 19. Пусть в каждой группе каждый человек сыграл с каждым вничью, а также каждый человек из первой группы проиграл каждому человеку из второй группы. Легко видеть, что 5 очков набрали в точности все шахматисты в первой группе, и их 11.