11 класс

11.5. На доске написаны 11 целых чисел (не обязательно различных). Может ли оказаться, что произведение любых пяти из них больше, чем произведение остальных шести? (И. Богданов)

Ответ. Может.

Решение. Пусть одно из чисел равно 10, а каждое из остальных равно -1. Тогда произведение любых пяти из них больше, чем произведение остальных шести. Действительно, если число 10 входит в произведение пяти чисел, то это произведение равно 10, а произведение оставшихся шести чисел равно 1, и 10 > 1. Если же число 10 не входит в произведение пяти чисел, то это произведение равно -1, а произведение оставшихся шести чисел равно -10, и -1 > -10.

11.6. Дано натуральное число n. Саша утверждает, что для любых n лучей в пространстве, никакие два из которых не имеют общих точек, он сможет отметить на этих лучах k точек, лежащих на одной сфере. При каком наибольшем k его утверждение верно? (А. Кузнецов)

Ответ. k=n при чётном $n,\,k=n+1$ при нечётном n, то есть $2\cdot \left\lceil \frac{n}{2}\right\rceil$.

Решение. Пример. При чётном n=2m рассмотрим m параллельных прямых и на каждой выделим пару непересекающихся лучей. Заметим, что в каждой паре лучей пересечений со сферой не больше двух, так как прямая имеет со сферой не более двух общих точек, поэтому $k\leqslant 2m$. Пример для нечётного n=2m-1 получается удалением из примера для n=2m одного луча.

Oиенка. Рассмотрим некоторую прямую ℓ , которая не перпендикулярна ни одному из наших лучей. Рассмотрим проекции наших лучей на ℓ , среди них не менее $\lceil \frac{n}{2} \rceil = \left \lfloor \frac{n+1}{2} \right \rfloor$ направлены в одну сторону (будем говорить, что вправо), забудем про остальные лучи. Пусть точка X на прямой принадлежит всем выбранным проекциям, выберем произвольную точку $Y \in \ell$ правее. Пусть α_X и α_Y — плоскости, перпендикулярные прямой ℓ , проходящие через X и Y соответственно. Каждый из выбранных

нами лучей пересекает обе эти плоскости. Выберем достаточно большое R такое, чтобы окружность $\omega \subset \alpha_Y$ с центром Y и радиуса R содержала внутри все точки пересечения плоскости α_V с выбранными лучами. Рассмотрим сферу Ω , которая касается плоскости α_X в точке X и содержит окружность ω . Рассмотрим любой из наших лучей. Он проходит через точку внутри сферы Ω , а его начало лежит в другом полупространстве относительно плоскости α_X , нежели Ω , поэтому он пересекает Ω в двух точках. Таким образом, мы получили $k = 2\lceil \frac{n}{2} \rceil$ точек пересечения.

11.7. Для натурального числа N рассмотрим все различные точные квадраты, которые можно получить из N вычёркиванием одной цифры в его десятичной записи. Докажите, что количество этих квадратов не превосходит некоторой величины, не зависящей от N. (С. Берлов, Ф. Петров, Д. Крачун)

Решение. Пусть число N состоит из k+1 цифры. Считаем далее, что k > 100: меньшие числа не влияют на искомую ограниченность.

Для i = 1, ..., k обозначим через n_i число, получающееся удалением из N *i*-ой с конца цифры. Обозначим через f(N)количество точных квадратов в множестве $\{n_1, \dots, n_k\}$. Наша цель — доказать, что f(N) ограничено сверху.

Пусть $N = 10^t N_1$, где N_1 не кратно 10. Если t нечётно, то число n_i может быть точным квадратом только при $i \leqslant t+1$, так что в этом случае $f(N) \le 2$. Если t чётно, то заключительные tнулей не влияют на дело, поэтому $f(N) = f(N_1)$. Поэтому далее считаем, что N не кратно 10.

Выделим множество $A \subset \{1, \ldots, k\}$ из f(N) номеров i, для которых $n_i=m_i^2$ — точный квадрат, причём натуральные числа m_i , $i \in A$, попарно различны.

Отметим следующее:

- 1) $n_i\geqslant 10^{k-1}$, следовательно $m_i\geqslant 10^{(k-1)/2}$ при всех $i\in A;$ 2) $|n_i-n_j|<10^{\max(i,j)};$
- 3) $N n_i$ кратно 10^{i-1} .

Из свойства 1) следует, что для различных номеров $i \neq j$ из A имеет место оценка

$$|n_i - n_j| = |m_i^2 - m_j^2| \ge m_i + m_j \ge 2 \cdot 10^{(k-1)/2}.$$

Сопоставляя это со свойством 2), получаем, что $\max(i,j) > (k-1)/2$. Таким образом, все элементы A, кроме, быть может, одного, больше, чем (k-1)/2. Обозначим $A_1 := A \setminus \{\min(A)\}$ (удалили из A наименьший элемент), тогда $|A_1| = f(N) - 1$ и $\min(A_1) \geqslant k/2$.

Пусть j>i—два элемента множества A_1 . Тогда по свойствам $1),\,2)$ имеем

$$10^j>|n_i-n_j|=|m_i^2-m_j^2|\geqslant 2\cdot 10^{(k-1)/2}\cdot |m_i-m_j|.$$
 (1) С другой стороны, по свойству 3) число $n_i-n_j=(m_i-m_j)(m_i+m_j)$ кратно 10^{i-1} .

Положим $r = \lceil (i-1)/2 \rceil$ (где $\lceil \cdot \rceil$ обозначает верхнюю целую часть). Хотя бы одно из чисел $m_i - m_j$, $m_i + m_j$ кратно 2^r , и хотя бы одно кратно 5^r . Кроме того, если N нечётно, то нечётны числа m_i , m_j , поэтому одно из чисел $m_i - m_j$, $m_i + m_j$ не кратно 4—а другое, соответственно, кратно 2^{i-2} . Иначе N не кратно 5, и аналогичным образом получаем, что одно из чисел $m_i - m_j$, $m_i + m_j$ кратно 5^{i-1} .

Рассмотрим пятиэлементное подмножество $\tilde{A}\subset A_1$, наименьший элемент \tilde{A} обозначим u, а наибольший v. Обозначим $r=\lceil (u-1)/2 \rceil$. Если N нечётно, положим $\alpha=u-2,\,\beta=r$; иначе положим $\alpha=r,\,\beta=u-1$. Из доказанного следует, что элементы множества $\{m_s:s\in \tilde{A}\}$ дают не более двух различных остатков по модулю 2^α и не более двух различных остатков по модулю 5^β . Значит, в \tilde{A} найдутся два различных элемента i< j такие, что m_j-m_i кратно $2^\alpha 5^\beta$. Тогда по (1) получаем

$$10^{v} \geqslant 10^{j} \geqslant 2 \cdot 10^{(k-1)/2} 2^{\alpha} 5^{\beta} \geqslant 2 \cdot 10^{(k-1)/2 + (u-1)/2} 2^{(u-1)/2} > 10^{u-1} 2^{u/2}.$$

откуда следует что v/u>1,01. Таким образом, если разбить отрезок [k/2,k] на группы подряд идущих чисел, в каждой из которых отношение любых двух элементов меньше чем 1,01 (количество таких групп меньше, например, миллиона), то любая из этих групп содержит не более 4 элементов множества A_1 . Отсюда вытекает ограниченность числа $|A_1|=f(N)-1$.

11.8. Из каждой вершины треугольника ABC провели внутрь него два луча, красный и синий, симметричные относительно бис-

сектрисы соответствующего угла. Около треугольников, образованных при пересечении лучей одного цвета, описали окружности. Докажите, что если описанная окружность треугольника ABC касается одной из этих окружностей, то она касается и другой. (А. Кузнецов, И. Фролов)

Первое решение. Обозначим треугольник, образованный синими лучами, через $A_1B_1C_1$ (как на рисунке), и пусть его описанная окружность касается окружности (ABC). Пусть окружность (A_1BC) вторично пересекает окружность (AB_1C) в точке P (которая, очевидно, лежит внутри треугольника $A_1B_1C_1$). Тогда $\angle APC = \angle AB_1C$ и $\angle BPC = \angle BA_1C$. Поскольку также $\angle APB + \angle BPC + \angle APC = 360^\circ = \angle AB_1C + \angle AC_1B + \angle BA_1C$ (второе равенство — сумма внешних углов треугольника $A_1B_1C_1$), то $\angle APB = \angle AC_1B$. Таким образом, точка P лежит и на окружности (AC_1B) .

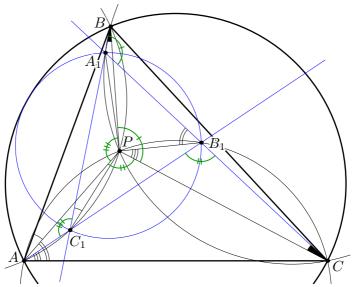


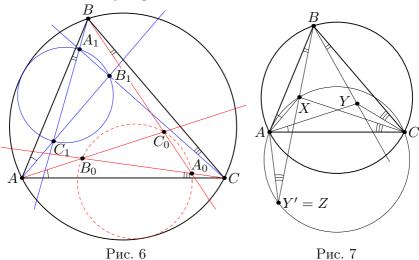
Рис. 5

Сделаем инверсию с центром в точке P (и с произвольным радиусом), образы точек будем обозначать теми же буквами со штрихами. Напомним, что для любых точек X и Y треугольни-

ки XPY и Y'PX' подобны (по углу и отношению заключающих сторон), поэтому $\angle X'Y'P = \angle PXY$.

Докажем, что треугольник $A_1'B_1'C_1'$ подобен треугольнику ABC. Действительно, $\angle B_1'A_1'C_1' = \angle B_1'A_1'P + \angle PA_1'C_1' = \angle PB_1A_1 + \angle A_1C_1P = \angle PAC + \angle BAP = \angle BAC$, аналогично для остальных углов.

Окружность (CPA_1B) при инверсии перейдет в прямую C'B', проходящую через вершину A'_1 треугольника $A'_1B'_1C'_1$. Найдем угол между этой прямой и стороной $A'_1B'_1: \angle B'A'_1B'_1=$ $= \angle PA'_1B'_1-\angle PA'_1B'= \angle A_1B_1P-\angle A_1BP= \angle A_1B_1P-\angle A_1CP= \angle CPB_1= \angle CAB_1$. Вместе с двумя аналогичными равенствами отсюда следует, что в подобных треугольниках ABC и $A'_1B'_1C'_1$ красные лучи в первом и лучи A'_1B', B'_1C', C'_1A' во втором — соответствующие элементы. Окружности $(A'_1B'_1C'_1)$ и (A'B'C') касаются (поскольку они получены инверсией из касающихся окружности треугольника, ограниченного красными лучами, что и требовалось.


Замечание. Из решения следует более общий факт: углы между окружностью (ABC) и окружностями, описанными около красного и синего треугольника, одинаковы.

Второе решение. Обозначим треугольник, образованный красными лучами, через $A_0B_0C_0$, а треугольник, образованный синими — $A_1B_1C_1$ (обозначения введем как на рисунке) Для определенности будем считать, что именно окружность $(A_1B_1C_1)$ касается окружности (ABC), а доказать нужно то же про окружность $(A_0B_0C_0)$.

Без ограничения общности можно считать, что точка C_1 лежит на отрезке AB_1 . По условию $\angle BAC_1 = \angle CAC_0$ и $\angle ABC_1 = \angle CBC_0$. Следовательно, точки C_0 и C_1 изогонально сопряжены относительно треугольника ABC. Аналогично, изогонально сопряжены точки A_0 и A_1 , B_0 и B_1 .

Обозначим через i композицию инверсии с центром в точке B с радиусом $\sqrt{AB\cdot BC}$ и симметрии относительно биссектрисы угла ABC. Тогда преобразование i меняет местами точки A и

C. Образы точек A_0 , B_0 и C_0 нам поможет описать следующее вспомогательное утверждение.

Лемма. Пусть точки X и Y изогонально сопряжены относительно треугольника ABC. Пусть прямая BX вторично пересекает окружность, описанную около треугольника AXC, в точке Z. Тогда i(Y)=Z.

Доказательство. Пусть i(Y) = Y'. Поскольку i(C) = A, то треугольники BCY и BY'A подобны, в частности, $\angle CBY = \angle ABY'$, откуда следует, что точка Y' лежит на продолжении отрезка BX за точку X. А также $\angle AY'X = \angle AY'B = \angle BCY = \angle ACX$, поэтому точка Y' лежит на окружности (AXC). Значит, Y' = Z, лемма доказана.

Вернёмся к решению задачи. Пусть прямая BA_1 вторично пересекает окружность (AA_1C) в точке A_2 , прямая BB_1 окружность (AB_1C) — в точке B_2 , прямая BC_1 окружность (AC_1C) — в точке C_2 . Тогда, согласно лемме, $i(A_0)=A_2,\ i(B_0)=B_2,\ i(C_0)=C_2$. Кроме того, i переводит окружность (ABC) в прямую AC. Следовательно, достаточно доказать, что прямая AC касается окружности $(A_2B_2C_2)$.

В силу вписанности четырёхугольников AB_1CB_2 и AA_1CA_2 мы получаем, что $\angle AB_2B = \angle ACB_1 = \angle ACA_1 = \angle AA_2B$,

поэтому четырёхугольник ABB_2A_2 вписанный. Аналогично четырёхугольник BCB_2C_2 тоже вписанный.

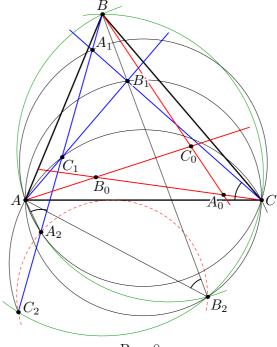


Рис. 8

Сделаем инверсию j с центром в точке A (и произвольным радиусом). Образы точек будем обозначать теми же буквами со штрихами.

Поскольку точка C_1 лежит на отрезке AB_1 , то точка C_1' лежит на продолжении отрезка AB_1' , при этом и точка B_1' , и точка C_1' расположены в угле B'AC', но вне треугольника AB'C'. Точка A_1' лежит внутри угла $B'AB_1'$ и вне треугольника AB'C'. Поскольку точки C, B_1, A_1 лежат на одной прямой, точка A_1' лежит на окружности $(AC'B_1')$. В частности, она расположена внутри угла $B'C'B_1'$.

Точки C_2' , A_2' , \bar{B}_2' расположены в другой полуплоскости относительно прямой AC', нежели точка B'. Кроме того, поскольку четырёхугольники AB_1CB_2 , AA_1CA_2 , AC_1CC_2 и ABB_2A_2 вписанные, то точка C' лежит на отрезках $A_1'A_2'$, $B_1'B_2'$, $C_1'C_2'$, а

точка B_2' — на отрезке $B'A_2'$. Поскольку окружности $(A_1B_1C_1)$ и (ABC) касаются, то окружность $(A_1'B_1'C_1')$, обозначим ее через ω_1 , касается прямой B'C'. Также четырёхугольники $AC'B_1'A_1'$, $B'C'B_2'C_2'$ и шестиугольник $AB'A_1'C_1'A_2'C_2'$ все вписанные, поскольку точка точка B_1 лежит на отрезке CA_1 , четырёхугольник BCB_2C_2 вписанный, а также точки B, A_1 , C_1 , A_2 , C_2 лежат на одной прямой именно в таком порядке.

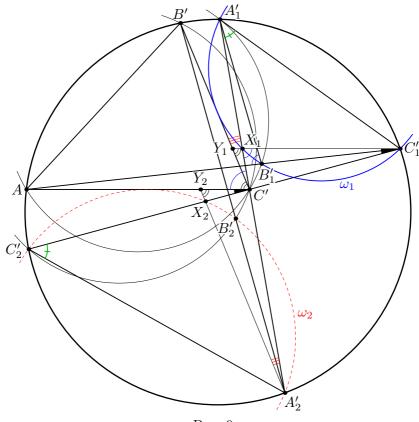


Рис. 9

Теперь достаточно доказать, что окружность $(A_2'B_2'C_2')$, обозначим ее через ω_2 , касается прямой AC', потому что это означает, что до инверсии касались окружности (ABC) и $(A_2B_2C_2)$.

Проведем через точку C_1' прямую параллельно AC' и обозначим ее точки пересечения с прямыми $C'A_1'$ и C'B' через X_1

и Y_1 соответственно. Через точку A_2' проведем прямую параллельно B'C' и обозначим ее точки пересечения с прямыми $C'C_2'$ и C'A через X_2 и Y_2 соответственно.

Четырёхугольник $AC'B_1'A_1'$ вписанный, а также $X_1C_1'\parallel AC'$. Значит, $\angle AB_1'A_1'=\angle AC'A_1'=\angle C'X_1C_1'$. Следовательно, точка X_1 лежит на окружности ω_1 . Аналогично точка X_2 лежит на ω_2 .

Пусть π_1 — полуплоскость, ограниченная прямой X_1C_1' , в которой лежит точка C'. Аналогично π_2 — полуплоскость, в которой лежит точка C', ограниченная прямой $A_2'X_2$. Обозначим через τ преобразование подобия, которое переводит точку C_1' в точку A_2' , точку X_1 в точку X_2 , а также полуплоскость π_1 в полуплоскость π_2 . (Такое преобразование подобия можно получить, например, как композицию поворотной гомотетии, переводящей X_1 в X_2 и C_1' в A_2' , и симметрии относительно прямой X_2A_2').

Четырёхугольник $A_1'C_1'A_2'C_2'$ вписанный, поэтому $\angle A_2'C_2'C'=\angle C_1'A_1'C'$. Следовательно, преобразование τ переводит окружность ω_1 в окружность ω_2 . Далее мы докажем, что, во-первых, $X_1Y_1/Y_1C_1'=X_2Y_2/Y_2A_2'$ (*) и, во-вторых, $\angle A_2'Y_2C'=\angle C_1'Y_1C'$ (**). Отсюда последует, что τ переводит точку Y_1 в точку Y_2 , а также прямую Y_1C' в прямую Y_2C' . Таким образом, поскольку прямая $C'Y_1'$ касается окружности ω_1 , то прямая $C'Y_2'$, касается окружности ω_2 , что и требовалось.

Остается доказать соотношения (*) и (**). В силу параллельности X_2Y_2 и B'C', а также X_1Y_1 и AC' имеем, что $\angle X_2Y_2C'=\angle AC'B'=\angle X_1Y_1C'$, откуда следует (**). Кроме того, $\angle Y_1C_1'C'=\angle Y_2C'X_2$ и $\angle Y_1C'X_1=\angle Y_2A_2'C'$, поэтому треугольник $Y_2C'X_2$ подобен треугольнику $Y_1C_1'C'$ по двум углам, а треугольник Y_1X_1C' — треугольнику $Y_2C'A_2'$. Следовательно, $\frac{Y_2X_2}{Y_2C'}=\frac{Y_1C'}{Y_1C_1'}$ и $\frac{Y_2A_2'}{Y_2C'}=\frac{Y_1C'}{Y_1X_1}$. Разделив первое полученное равенство на второе, мы получаем в точности соотношение (*).

Отметим, что точки X_1 и X_2 могут располагаться на продолжениях отрезков $C'A_1'$ и $C'C_2'$ (за точки A_1' и C_2'), но на решение это не влияет.

		Критерии оценивания 11 класса (A) Задача решена в предположении, что меньший главный делитель - это число, деленное на
11.1	не более 1 балла	простое
	не более 4 баллов	(B) В работе считается, что вид второго главного делителя зависит от степени вхождения наименьшего простого
	не более 3 баллов	(С1) Не разобран хотя бы один существенный случай вида второго главного делителя
	не более 3 баллов	(C2) В решении с алгоритмом восставления числа, не объяснено в какой ситуации мы находимся. Этот критерий аналогичен критерию (C1)
11.2		Специальных критериев нет
11.3	0 баллов	(N1) Недоведенный счет (координатный, тригонометрический, комплексный).
	0 баллов	(N2) Замечено, что четырехугольники APXZ и AQYZ вписаны, посчитаны некоторые углы на исходной картинке (в частности, доказано, что BP перпендикулярно XZ).
	0 баллов	(N3) Переформулировка задачи с помощью инверсии.
	1 балл	(A) Центр окружности (XYZ) построен как точка пересечения серединных перпендикуляров к XZ YZ и доказано, что эти серединные перпендикуляры проходят через середины AP и AQ.
11.4	0 баллов	(N1) оценка сверху 2n-3 для нечётного (или для любого) n
	0 баллов	(N2) разобрано конечное количество случаев
	2 балла	(A) оценка сверху 2n-4 для чётного n
	1 балл	(A0) доказано, что рёбра цвета 1 выходят из всех вершин при чётном n (или: из всех вершин кроме быть может одной при произвольном n). Не суммируется с критерием A.
	2 балла	(B) пример на 2n-3 для нечётного n
	1 балл	(B0) пример на 2n-3, работающий при бесконечно многих, но не всех, нечётных n
	2 балла	(C) пример на 2n-4 для чётного n
	-1 балл	(М) Неверно доказано, что рёбра полного графа на 2n вершинах разбиваются на 2n-1 совершенных паросочетаний
		х(А,А0), max(B,B0), C, D суммируются
	Darribi Sa Hyhkibi Illa.	\(\lambda,\tau\right), \(\tau\right), \tau\right), \(\tau\right), \tau\right) \(\tau\right) \\(\tau\right) \(\tau\right) \tau\right) \(\tau\right) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
11.5	5 баллов	(А) Приведен верный пример, но отсутствуют какие-либо комментарии, его объясняющие
		(В) Верно доказано, что в наборе, удовлетворяющем условию, не могут быть нули, но пример н
	1 балл	построен
11.6	Складываются баллі	ы только из разных групп (А, В, С)
	0 баллов	(A1) В случае четного п доказано, что для некоторого расположения лучей удастся отметить не более п точек.
	0 баллов	(A2) В случае четного п доказано, что при любом расположении лучей удастся отметить п точен лежащих на одной сфере
	1 балл	(A) A1+A2
	1 Gastis	(В) В случае нечетного п доказано, что для некоторого расположения лучей удастся отметить н
	1 балл	более п точек.
	4 балла	(C) В случае нечетного п доказано, что при любом расположении лучей удастся отметить п точек, лежащих на одной сфере
	1 балл	(С1) В случае нечетного п выбрано полупространство, в которое направлены хотя бы половина лучей, конструкция искомой сферы не приведена (например, только заявлено, что такая сфера существует)
	2 балла	(C2) В случае нечетного п выбрано полупространство, в которое направлены хотя бы половина лучей, про конструкцию искомой сферы указано лишь то, лишь то, что она должна лежать в выбранном полупространстве и иметь достаточно большой радиус
	2 балла	(C3) В случае нечетного п неверно построено подпространство, в которое направлены хотя бы половина лучей, но верно описана конструкция сферы в таком полупространстве
	-1 балл	(М1) При выборе полупространства утерян случай параллельности разделяющей плоскости одному из лучей
		(M2) Ошибки в конструкции сферы, касающейся разделяющей плоскости: используются неверные неравенства, отмечаются точки пересечения лучей, не лежащих в одной плоскости и
	-2 балла	т.д.
	-2 001110	
11.7		ы только из разных групп
11.7		ы только из разных групп (A) ограничено число квадратов, получаемых вычёркиванием цифры из второй половины
11.7	Складываются баллі	
11.7	Складываются баллі 1 балл	(А) ограничено число квадратов, получаемых вычёркиванием цифры из второй половины
	Складываются баллі 1 балл 1 балл 0 баллов	(A) ограничено число квадратов, получаемых вычёркиванием цифры из второй половины (B) разобран случай N, взаимно простого с 10 (N) редукция к случаю N, не кратного 10
	Складываются баллі 1 балл 1 балл	(A) ограничено число квадратов, получаемых вычёркиванием цифры из второй половины (B) разобран случай N, взаимно простого с 10