
Задача 1.8.1. «Часы» (10 баллов). На часах в некоторый момент времени угол между часовой и минутной стрелками составил $\alpha = 60^\circ$. Определите, через сколько минут угол между стрелками в следующий раз может снова оказаться равным α ? Положение стрелок на рисунке – условное.

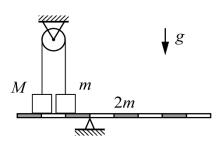
Задача 1.8.2. Соревнование калориметров (10 баллов). В два калориметра положили по куску льда и в течение $\tau_{\rm K}=10$ минут стали нагревать их содержимое с одинаковой мощностью. Известно, что первый кусок льда легче второго на $\Delta m=100$ г. На рисунке приведена зависимость разности температур t в калориметрах от времени τ .

К сожалению, шкала оси разности температур не сохранились, а изломам графика соответствуют времена τ_1 , τ_2 , τ_3 , τ_4 .

Объясните, какие физические процессы соответствуют каждому линейному участку графика.

Определите:

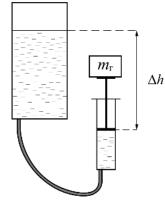
- 1) мощность P нагревателя;
- 2) массы m_1 и m_2 кусков льда;
- 3) начальные и конечные температуры кусков льда;
- 4) разность температур Δt в момент времени τ_1 .


Справочные данные: удельная теплоемкость льда $c_{_{
m I}}=2~100~{\rm Дж/кг^{\circ}C},$ удельная теплоемкость воды $c_{_{
m B}}=4~200~{\rm Дж/кг^{\circ}C},$ удельная теплота плавления льда $\lambda=330~{\rm KДж/кг}.$

24 января на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач первого тура. Начало разбора (по московскому времени):

7 класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

26 января состоится онлайн-разбор решений заданий второго тура. Начало разбора:


7 класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

Задача 1.8.3. Неразрывность (10 баллов). При каких значениях масс груза M возможно равновесие системы, приведенной на рисунке, если m = 4,0 кг? Горизонтальный рычаг массой 2m разделен на 8 одинаковых участков. Нить выдерживает максимальное натяжение $T_0 = 25$ H. g = 10 H/кг.

Задача 1.8.4. Физика в медицине (20 баллов). Для измерения некоторых технических

характеристик медицинского шприца экспериментатор Глюк собрал установку, изображенную на рисунке. Исследуемый шприц он закрепил в вертикальном положении. Вместо иглы к нему присоединил тонкую гибкую трубку, второй конец которой соединил с отверстием в дне цилиндрического сосуда. Затем Глюк измерил разность уровней Δh воды в сосуде и шприце, при которой поршень шприца начинал двигаться вверх в процессе плавного подъема сосуда. Оказалось, что величина Δh зависит от массы m_{Γ} груза, закрепленного на верхнем упоре поршня. Результаты измерений зависимости $\Delta h(m_{\Gamma})$ он представил в таблице, в которой также приведена Δh_{χ} для груза неизвестной массы m_{χ} .

Примечания: массой поршня можно пренебречь; воздушная прослойка между поршнем и водой в шприце отсутствует; плотность воды $\rho = 1,0 \cdot 10^3 \text{ кг/м}^3$; g = 10 H/кг,

Определите площадь S поршня и силу трения скольжения $F_{\text{тр}}$ между поршнем и стенкой шприца. Для этого:

- 1. Выведите теоретическую зависимость $\Delta h(m_{\Gamma})$.
- 2. Постройте график экспериментальной зависимости $\Delta h(m_{\rm r})$
- 3. С помощью графика определите $F_{\rm TP}$ и S.
- 4. Чему равна неизвестная масса m_x груза в шестой строке таблицы?

$N_{\underline{0}}$	m_{Γ} , Γ	Δh , M
1	15	1,36
2	24	1,47
3	37	1,53
4	52	1,72
5	64	1,76
6	m_{x}	1,90
7	100	2,08

²⁴ января на портале http://abitu.net/vseros **будет проведён онлайн-разбор решений задач первого тура**. Начало разбора (по московскому времени):

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

²⁶ января состоится онлайн-разбор решений заданий второго тура. Начало разбора: