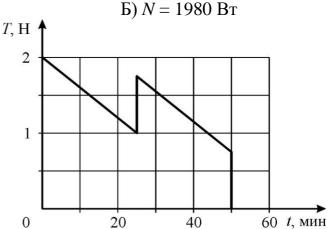
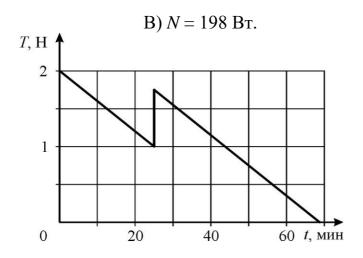
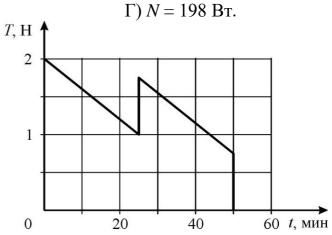
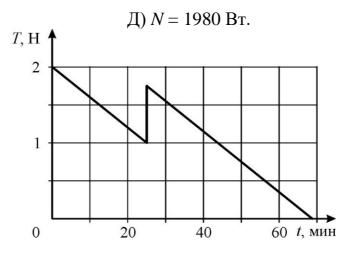

ПРИГЛАСИТЕЛЬНЫЙ ШКОЛЬНЫЙ ЭТАП ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ФИЗИКА. 2020 г. 10 класс

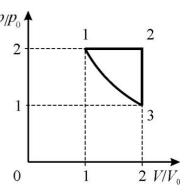

Тестовые задания с выбором ответа

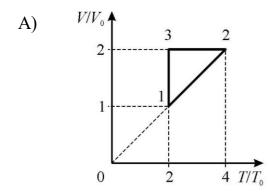
- **1.** Камень толкают с начальной скоростью v = 4 м/с, и он начинает скользить по горизонтальной поверхности. Коэффициент трения между камнем и поверхностью $\mu = 0,2$. Через какое время камень остановится? Какое расстояние проедет камень по поверхности до остановки? Считайте, что g = 10 м/с².
 - А) 4 с, 16 м
 - Б) 2 с, 4 м
 - В) 4 с, 8 м
 - Г) 2 с, 8 м
 - Д) 2 с, 6 м
- 2. В теплоизолированном сосуде в состоянии теплового равновесия находятся вода и погружённый в неё кусок льда, в который вморожены нить и стальной шарик. Второй конец нити прикреплён к дну сосуда. Также на дне сосуда находится нагреватель, обладающий некоторой постоянной мощностью. В эксперименте исследуется зависимость силы Т натяжения нити от времени t. В своих заметках экспериментатор написал, что через достаточно большое

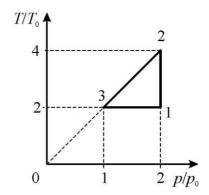


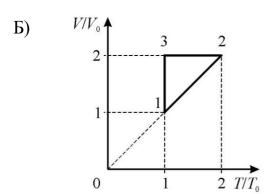

время после включения нагревателя стальной шарик оказался на дне сосуда, а льдинка всплыла на поверхность воды. Найдите мощность нагревателя и укажите правильный график зависимости T(t). Считайте, что $g=10~\text{m/c}^2$, удельная теплота кристаллизации воды $\lambda=330~\text{кДж/кг}$, а плотности воды и льда $-1000~\text{кг/m}^3$ и $900~\text{кг/m}^3$ соответственно. Теплообмен в системе происходит достаточно быстро.

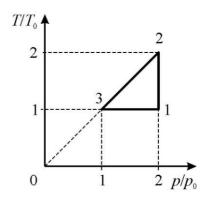


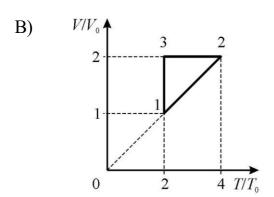

Пригласительный школьный этап Всероссийской олимпиады школьников. Физика. 2020 г. 10 класс

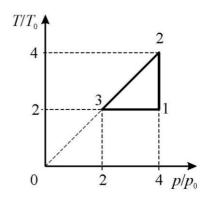


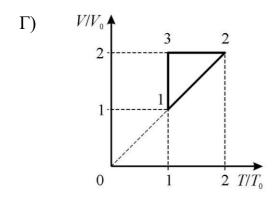


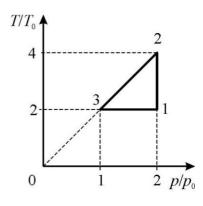


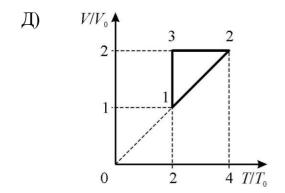

3. Как выглядит замкнутый цикл, изображённый P/P_0 на рисунке, в относительных координатах V-T и T-p? Все координаты поделены на некоторые значения p_0 , V_0 , T_0 , такие что $\frac{p}{p_0} = \frac{V}{V_0} = \frac{T}{T_0}$. Линия, соответствующая процессу 3-1, - гипербола.

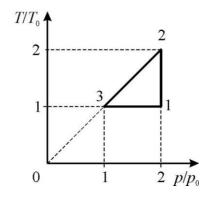


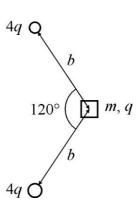








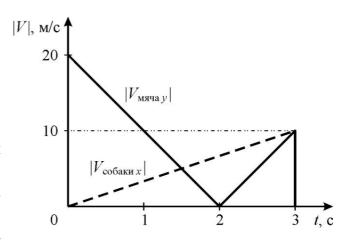






закреплены 4q Q **4.** Два маленьких заряженных шарика на горизонтальном столе. На стол кладут маленький заряженный кубик, как изображено рисунке (вид сверху). Масса кубика равна $m = 200 \, \text{г}$, расстояние b=30 см, отмеченный на рисунке угол равен 120°. Шарики и кубик заряжены одноимённо, заряд каждого шарика в четыре раза больше заряда кубика. Каким может быть заряд q кубика для того, чтобы кубик оставался на месте, если коэффициент трения между ним и столом 4q О $\mu = 0.2$? Считайте, что $g = 10 \text{ м/c}^2$.

- A) $q \ge 1,3$ мкКл
- Б) $q \ge 1$ мкКл
- B) $q \le 1$ мкКл
- Γ) $q \le 1.3$ мкКл
- Д) q = 1 мкКл
- **5.** Электрическая цепь, схема которой изображена на рисунке, состоит из батарейки, лампочек, ключей и идеальных проводов. Разрешено замкнуть максимум два ключа.
 - 1) Какое максимальное число лампочек может гореть?
 - 2) Какие выключатели нужно при этом замкнуть?



- А) 8; выключатели 4 и 5
- Б) 3; выключатель 2
- В) 6; выключатели 1 и 3
- Г) 2; выключатель 2
- Д) 4; выключатели 1 и 2

Ответы:	1	2	3	4	5
	Б	Γ	A	В	Б
	2 балла	5 баллов	2 балла	2 балла	4 балла

Задания с кратким ответом

6-8. Юный бейсболист бросил мяч под |V|, м/с некоторым VГЛОМ К горизонту. Через 3 секунды после броска мяч упал на плоскую крышу навеса, находившегося рядом с площадкой, и сразу остановился. На рисунке сплошной линией изображён график зависимости модуля вертикальной проекции скорости мяча от времени, а пунктирной линией отмечен модуль скорости собаки, которая погналась за

мячом по площадке сразу после броска и бежала, пока мяч не упал. Используя графики и считая, что $g=10 \text{ м/c}^2$, ответьте на следующие вопросы.

- 6) Найдите высоту h навеса в метрах (ответ округлите до целого числа). (З балла)
- 7) Определите, какое расстояние l в метрах пробежала собака до момента падения мяча (ответ округлите до целого числа). (2 балла)
- 8) Определите среднюю путевую скорость мяча при его движении вдоль вертикальной оси. Ответ дайте в м/с и округлите до десятых долей. (**3 балла**)

Ответы:

6)	7)	8)
15	15	8,3

Максимум 8 баллов за задачу.

- **9-10.** Один экспериментатор захотел провести исследования плотности льда. Для этого он взял ледяной кубик с ребром a=20 см и погрузил его в ёмкость с водой. Можно считать, что верхняя грань кубика остаётся горизонтальной в течение всего эксперимента, $g=10 \text{ м/c}^2$, $\rho_{\text{воды}}=1000 \text{ кг/м}^3$, $\rho_{\text{льда}}=900 \text{ кг/м}^3$, $\rho_{\text{керосина}}=800 \text{ кг/м}^3$.
- 9) На сколько сантиметров верхняя грань кубика выступает из воды? Ответ округлите до целого числа. (**2 балла**)
- 10) Затем экспериментатор стал аккуратно наливать поверх воды керосин. Он прекратил это делать в тот момент, когда высота слоя керосина совпала с верхней гранью кубика. Чему равна высота слоя налитого керосина? Ответ выразите в сантиметрах и округлите до целого числа. (5 баллов)

Ответы:

9)	10)
2	10

Максимум 7 баллов за задачу.

- **11-13.** Известно, что в кастрюле, стоящей на плите, 1 литр воды нагревается на 10 градусов за 42 с. Мощность конфорки постоянна, потери теплоты пренебрежимо малы. Удельная теплоёмкость воды 4200 Дж/(кг·°С), удельная теплоёмкость льда 2100 Дж/(кг·°С), удельная теплота плавления льда 330 кДж/кг.
- 11) Найдите мощность конфорки. Ответ дайте в кВт, округлив до целого числа. (**1 ба**лл)
- 12) За какое время можно нагреть на той же конфорке 2 литра воды от 0 °C до температуры кипения? Ответ дайте в секундах, округлив до целого числа. (2 балла)
- 13) За какое время можно нагреть на той же конфорке до температуры кипения воды смесь из 1 литра воды и 3-х килограммов расколотого на маленькие кусочки льда? Изначально смесь находится при температуре таяния льда. Ответ дайте в минутах с точностью до десятых долей. (4 балла)

Ответы:

11)	12)	13)	
1	840	44,5	

Максимум 7 баллов за задачу.

14-18. Напряжение идеальной батарейки U = 7 В. Сопротивление R = 1 кОм. Приборы можно считать идеальными. Учитывая, что все ответы выражаются целыми числами, найдите:

- 14) Показание вольтметра V_1 . Ответ дайте в В. (**2 балла**)
- 15) Показание амперметра A_1 . Ответ дайте в мA. (2 балла)
- 16) Показание вольтметра V_2 . Ответ дайте в В. (2 балла)
- 17) Показание амперметра A_2 . Ответ дайте в мА. (2 балла)
- 18) Найдите мощность тепловых потерь в резисторе, сопротивление которого равно 4*R*. Ответ дайте в мВт. (**2 балла**)

Ответы:

14)	15)	16)	17)	18)
3	3	4	1	4

Максимум 10 баллов за задачу.

Всего за работу – 47 баллов.