Задача 10.1. Золушка.

Задание

- 1. Представьте себе мешок с пшеном (50 кг), стоящий на полу. При помощи выданного вам оборудования, найдите, чему равна плотность **крупы** на дне мешка.
- 2. Измерьте плотность зерен пшена.
- 3. Измерьте плотность драже.

Оборудование: пшено (в стаканчике), драже (10 шт), шприц (20 мл), весы.

<u>Примечание.</u> При определении плотности зерен рассматривайте крупу как плотную упаковку одинаковых шариков. Объем шара $V_{\rm m}=4/3\pi r^3$, где r — радиус шара.

Возможное решение

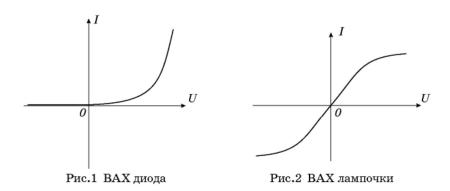
- 1. Измеряем массу M пустого шприца. Насыпаем в шприц пшено. Измеряем массу $m_{\rm общ}$ шприца с пшеном и объем V, занимаемый крупой. Для моделирования состояния зерна на дне мешка прижимаем зерно поршнем шприца. Плотность крупы $\rho = \frac{m_{\rm oбщ} M}{V} = 0,83 \frac{z}{c M^3}.$ Если зерно насыпать в шприц и не уплотнять, измеренная плотность окажется на 10-15% меньше ($\rho_{\rm kp} \approx 0,7\,$ г/см 3).
- 2. Предположим, что крупа подобна кристаллической структуре, элементарной ячейкой которой является куб, в каждой из вершин которого находится центр зерна и еще у одного центр совпадает с центром куба (объемно-центрированная кубическая решетка). Найдем плотность упаковки такой решетки $k = \frac{V_0}{V_{\rm S}}$, где $V_0 = NV_{\rm III}$ объем, занимаемый зернами, N- число зерен, приходящихся на одну ячейку, $V_{\rm S} = a^3$ объем ячейки. Ребро куба a можно связать с радиусом зерна r: $a\sqrt{3} = 4r$ (на большой диагонали куба укладывается два диаметра зерна). N подсчитаем таким образом: каждое из 8 зерен, центры которых находятся в вершинах кубах, принадлежит 8 соседним ячейкам, поэтому на каждую ячейку приходится по 1/8 зерна, и еще одно зерно находится в центре куба: $N=8\cdot\frac{1}{8}+1=2$. После подстановки, $k=\frac{\pi\sqrt{3}}{8}\approx 0,68$. Плотность зерен $\rho_{\rm sep}=\frac{\rho_{\rm sep}}{k}\approx 1,2$ г/см 3 . Для гранецентрированной кубической решетки аналогичный расчет дает k=0,74 и

 $\rho_{\rm зер} = \frac{\rho_{\rm кp}}{k} \approx 1,1 \, \text{г/см}^3$. Это наиболее плотная упаковка, наряду с гексагональной. У простой

кубической решетки (1 зерно на 1 ячейку) k=0,52, тогда $\rho_{\rm sep}=\frac{\rho_{\rm kp}}{k}\approx~1,6~{^2/_{CM}}^3$

3. Измеряем массу m_1 5-6 драже. Далее насыпаем в шприц небольшое количество пшена так, чтобы у дна образовалась «подушка» из зерна, на которую бросаем одно драже. Аккуратно насыпаем зерно, чтобы заполнить промежутки между драже и стенками шприца и полготовить «полушку» для следующего драже. Так продолжаем, пока общий объем $\rho = \frac{m_{oбщ} - M}{V} = 0,83 \frac{2}{cM}$ на 20 мл (сверху при этом должен находиться слой зерна под геряем массу шприца с драже и пшеном m_2 . Масса пшена $m_{mu} = m_2 - m_1 - M$. Так как размер зерен пшена много меньше размера драже, можем считать, что крупа заполнила все промежутки, и их объем был равен $V_{np} = \frac{m_{nm}}{\rho_{kp}}$. Тогда объем,

занимаемый самим драже, $V_{\rm дp} = V_{\rm общ} - V_{\rm пp}$, а его плотность $\rho_{\rm дp} = \frac{m_{\rm l}}{V_{\rm дp}} = (1, 2-1, 3) \frac{2}{c_{\rm M}^3}$.

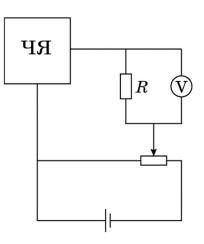

№	Содержание критерия	Баллы
1.	Предложен способ измерения плотности крупы на дне мешка,	1
	включая расчетную формулу	
2.	Измерена плотность крупы (точность не хуже 5%)	2
	Если точность хуже 5%, но в пределах 10% - 1 балл	
3.	Выполнено повторное измерение	1
4.	Предложен способ расчета плотности зерен (нужно учесть	1
	воздушные промежутки, для этого рассмотреть структуру крупы)	
5.	Правильно найдена плотность упаковки (в соответствии с	2
	выбранным типом кристаллической решетки)	
	Если сделана разумная оценка $0.5 < k < 0.75$ без вывода формул -1	
	балл	
6.	Вычислена плотность зерен:	1
	при $k = 0.52 \ \rho_{\rm 3ep} \approx 1.6 \ \Gamma/{\rm CM}^3$,	
	при $k = 0.68 \ \rho_{\rm 3ep} \approx 1.2 \ \Gamma/{\rm cm}^3$,	
	при $k = 0.74 \ \rho_{\text{3ep}} \approx 1.1 \ \Gamma/\text{см}^3$.	
7.	Предложен способ измерения плотности драже («крупа вместо	1
	воды»)	
8.	Правильный метод определения объема промежутков (через	1
	плотность крупы)	
9.	Выполнены необходимые измерения (m_1 , m_2 , $V_{oбщ}$)	1
10.	Выполнены повторные измерения (не менее двух)	2
	Если повторное измерение одно – 1 балл	
11.	Определена плотность драже $\rho_{\rm дp} = (1,3-1,6)$ г/см ³	2
	Если $\rho_{\rm дp}=(1,2-1,3)$ г/см ³ , или, $\rho_{\rm дp}=(1,6-1,7)$ г/см ³ – 1 балл	

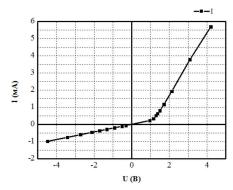
Итого: 15 баллов

Задание 10.2. Ох уж эти ВАХи!

- 1) Снимите вольтамперную характеристику (BAX) выданного вам «черного ящика» и нарисуйте схему электрической цепи, с помощью которой вы проводили измерения.
- 2) Изобразите полученную ВАХ на графике.
- 3) Предложите вариант схемы электрической цепи, которая может располагаться внутри «чёрного ящика».
- 4) Определите сопротивление(я) резистора(ов) в «чёрном ящике».

Электрическая цепь, находящаяся внутри «чёрного ящика», содержит не более 3-х элементов (это могут быть резисторы, диоды, лампочки), но только один из них нелинейный. Вольтамперные характеристики нелинейных элементов (диода и лампочки) схематически изображены на рис. 1 и рис. 2.


<u>Оборудование</u>: «черный ящик», резистор сопротивлением 10 Ом, переменный резистор, батарейка (источник тока), вольтметр (мультиметр), соединительные провода, миллиметровая бумага для построения графиков.


Решение:

Соберем электрическую цепь (рис. справа). При таком соединении приборов мы сможем регулировать напряжение, подаваемое на «черный ящик» в наиболее широком диапазоне. Регулируя сопротивление переменного резистора, будем измерять вольтметром напряжение на известном резисторе, и на «черном ящике».

Силу тока через «черный ящик» найдем с помощью закона Ома для резистора R.

По полученным данным построим BAX «черного ящика» для разных полярностей его подключения. Получится график примерно следующего вида:

Характерный изгиб ВАХ и разный вид графика при различной полярности говорят о наличии диода. Ветвь для отрицательных напряжений соответствуют закрытому состоянию диода. Поскольку ток при этом течет и зависимость I(U) линейна, делаем вывод о том, что параллельно диоду присоединён резистор. Правая ветвь ВАХ после открытия диода идет не слишком круто вверх, что свидетельствует о наличие резистора, соединенного последовательно со диодом.

Обратные наклоны прямых:

$$r_1 = 4,5 \kappa O M$$
$$r_2 = 0,55 \kappa O M$$

Возможные варианты схем.

Схема 1.

При $U\!<\!0$ (участок AO) ток через диод не идёт, поэтому общее сопротивление цепи $R_{\text{общ}}=R_{\text{l}}+R_{\text{2}}$ можно найти из закона Ома.

При
$$U>0$$
 на участке BC отношение $\dfrac{\Delta U}{\Delta I}=R_2$. Отсюда $R_1=R_{
m o 6 m}-R_2$.

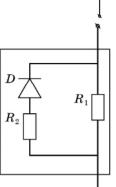


Схема 2.

При U < 0 (участок AO) ток через диод не идёт, поэтому сопротивление R_1 можно найти из закона Ома.

При
$$U > 0$$
 на участке BC отношение $\frac{\Delta U}{\Delta I} = \frac{R_1 R_2}{R_1 + R_2}$.

Отсюда
$$R_2 = \frac{R_1 R_{12}}{R_1 - R_{12}}$$
.

Сопротивления:

	Модель 1	Модель 2
R ₁ , кОм	3,95	4,5
R ₂ , кОм	0,55	0,63

Критерии оценивания:

$N_{\overline{0}}$	Содержание критерия	Баллы	
1.	Идея регулирования напряжения (потенциометр)		
2.	Идея использования вольтметра в качестве амперметра		
3.	Приведена схема электрической цепи		
4.	Выполнены измерения для ВАХ при одной полярности подключения		
	«серого ящика»		
	Не менее 10 измерений	2	
	От 7 до 9 измерений	1	
	От 5 до 6 измерений	0,5	
5.	Выполнены измерения для ВАХ при другой полярности	2	
	подключения «серого ящика»		
	Не менее 10 измерений	2	
	От 7 до 9 измерений	1	
	От 5 до 6 измерений	0,5	
6.	Построен график для одной полярности	1	
	Подписаны оси	0,25	
	Грамотно выбран масштаб по осям	0,25	
	Нанесены точки	0,25	
	Проведена гладкая кривая	0,25	
7.	Построен график для другой полярности	1	
	Подписаны оси	0,25	
	Грамотно выбран масштаб по осям	0,25	
	Нанесены точки	0,25	
	Проведена гладкая кривая	0,25	
8.	Указано, что внутри «серого ящика» есть диод	1	
9.	Указано, что внутри «серого ящика» есть два резистора		
10.	Приведена одна из двух возможных схем соединения элементов в	2	
	«сером ящике»		
11.	Определено значение резистора R_I	1	
12.	Определено значение резистора R_2	1	

Итого: 15 баллов