## Задание 7.1. и 8.1. Изменение объема при деформации

С помощью выданного вам оборудования определите длину  $L_0$ , диаметр  $d_0$  и объем  $V_0$  недеформированного резинового жгута. Опишите процедуру измерений  $L_0$ ,  $d_0$ ,  $V_0$ . Подумайте и опишите, как определить длину  $L_1$ , диаметр  $d_1$  и объем  $V_1$  деформированного (растянутого) резинового жгута. Приведите поясняющий рисунок. Проведите соответствующие измерения. Следите за тем, чтобы деформация жгута была однородной. Повторите измерения для 2-3 различных масс груза. Результаты занесите в таблицу. Обозначим увеличение интересующих нас параметров символами  $\Delta L$ ,  $\Delta d$ ,  $\Delta V$ .

| $N_{\underline{0}}$ | $L_0$ , cm |  |  |  | $\Delta V/V_0$ |
|---------------------|------------|--|--|--|----------------|
| измерения           |            |  |  |  |                |
| 1                   |            |  |  |  |                |
| 2                   |            |  |  |  |                |
| 3                   |            |  |  |  |                |
| 4                   |            |  |  |  |                |

- 1) Постройте график зависимости  $\Delta d/d_0$  от  $\Delta L/L_0$ . Оцените отношение  $\mu = (\Delta d/d_0)$  к  $(\Delta L/L_0)$  при  $(\Delta L/L_0)$  стремящемся к нулю. Коэффициент  $\mu$  часто встречается в теории упругости и называется коэффициентом Пуассона.
- 2) Найдите объем растянутого жгуга при  $L \approx 3L_0$ . Укажите, растёт или уменьшается объем жгута при его растяжении.

**Полезная информация**: С хорошей степенью точности можно считать, что площадь квадрата больше площади вписанного в него круга в 1,273 раза.

**Приборы и оборудование**: резиновый шнур, трубка, измерительная лента, груз, пластиковая бутылка, заполненная водой, пластиковый стакан, миллиметровая бумага для построения графика.

## Задание 7.2. и 8.2. Минимизируем угол

С помощью выданного вам оборудования соберите конструкцию, подобную изображенной на рис. 1.

Прикрепите кнопками лист миллиметровой бумаги к листу прессованного картона. Прикрепите один конец нити к кнопке, которую воткните в верхний угол листа прессованного картона. На расстоянии  $L_0=13-15$  см от кнопки привяжите к нити тяжелый груз (обозначим получившийся участок нити AB). Ещё через 13 см привяжите к нити лёгкий груз (второй участок нити обозначим BC). Потяните за свободный конец нити так, чтобы она оказалась горизонтальной. С помощью транспортира измерьте угол  $\phi_1$  между участками нити AB и BC. Определите длину  $L_1$  проекции участка нити BC на горизонтальную ось. Увеличьте натяжение нити и измерьте новое значение угла  $\phi_2$  и длину  $L_2$  проекции участка BC. Снимите серию значений параметров  $\phi_i$  и  $L_i$  (не менее 10 точек). Постройте график  $\phi(L)$  и с его помощью определите минимальное значение угла  $\phi$ . Укажите, при какой длине  $L_i$  достигается этот угол.

**Приборы и оборудование**: Лист миллиметровой бумаги, лист прессованного картона, нить, два груза разных масс, 5 металлопластиковых кнопок, бумажный транспортир.



Рис. 1